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ABSTRACT 

A Boolean algebra B that has a well-founded sublattice which generates 

B is called a well-generated Boolean algebra. Every well-generated 

Boolean algebra is superatomic. However, there are superatomic algebras 

which are not well-generated. We consider two types of increasing chains 

of Boolean algebras, canonical chains and rank preserving chains, and 
show that the class of well-generated Boolean algebras is not closed under 
union of such chains, even when these chains are taken to be countable. 

A Boolean algebra is s u p e r a t o m l c  iff its Stone space is scattered. If B is 

superatomic and a E B, then the r ank  of a is the Cantor Bendixon rank 

of the Stone space of {b[ b_< a}. A chain {Ba[ a < 6} is acanonlcal 
cha in  if for every a < 13 < 6, Ba is the subagebra of B~ generated by all 

members of Bj3 whose rank is < a. For a superatomic algebra B, I (B)  
denotes the ideal consisting of all members of B whose rank is less than 

the rank of B. A chain {Ba[ a < 6} is a r a n k  p r e s e r v i n g  cha in  if for 

every a < j3 < 6 and a E I(Ba),  the rank and mutiplicity of a in Ba are 
equal to the rank and mutiplicity of a in B~. 
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1. I n t r o d u c t i o n  

A Boolean algebra B is said to be we l l -gene ra t ed  if B has a sublattice G 

such that  G generates B and G is a well-founded subposet of B. Every well- 

generated Boolean algebra is superatomic, that  is, its Stone space is scattered 

([BR1] Proposition 2.7(b)). However, there are superatomic algebras which are 

not well-generated ([BR1] Theorem 3.4(a)). 

We consider two types of increasing chains of Boolean algebras, and show 

that  the class of well-generated Boolean algebras is not closed under union of 

such chains. The class of superatomic Boolean algebras, on the other hand, is 

closed under these limits, and this last fact is trivial. 

Notations: Let B be a Boolean algebra (BA). Then At(B) denotes the set of 

atoms of B, and /At (B)  denotes the ideal of B generated by At(B). Note that  

/At(B) may be equal to B. We define by induction on ordinals the sequence of 

canonical ideals  of B. Let Io(B) = {0B}. Suppose that the ideal I,~(B) has 

been defined. Let ~c~: B --* B/Ic, (B) denote the canonical homomorphism from 

B onto B/Ic~(B). Define 

1(~+1 (B) ---- ~0~ 1 (IAt(B/Ia(B))). 

For a limit ordinal 5 define 

I (B) = U Iv(B). 
"1<5 

A Boolean algebra B is supera torn ic ,  if for some ordinal a, B/Ia(B) is 

finite. Suppose that  B ~ {0B}. The first c~ for which B/Ic,(B) is finite is called 

the r a n k  of B, and is denoted by rk(B). If B = (0B}, then rk(B) is defined 

to be -1 .  In the rest of this work we assume that  B denotes a superatomic 

Boolean algebra. 

For a E B we let B F a denote the Boolean algebra induced by B on the set 

{b E B I b _< a}. The r a n k  of a in B is defined by rkS(a) = rk(B [ a). Note that  

Ic,(B) = {a E B] rkB(a) < a}. Define I(B) = Irk(B)(B). The multiplicity of 

a E B is defined by mltB(a) = I(B r a)/I((B [a)) I. The algebra B is u n i t a r y ,  

if B/I(B) ~ {0, 1}. 

De~nition 1.1: Let B and C be superatomic BA's such that  B C C. 
(a) B C rk C, if for every b E I(B), rkB(b) = rkC(b) and mltS(b) = mltC(b). 

(b) B C_ can  C, if for s o m e  ordinal t3, I(B) = I~(C). Note that  if B C can C 

and B r C, then B is unitary. 
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(c) Let /3 = {Bi : i < a} be a chain o f supe ra tomic  BA's. /3 is a r a n k  

p r e s e r v i n g  chain ,  if for every i < j < a ,  Bi c rk Bj.  B is a c a n o n i c a l  

chain ,  if for every i < j < a,  Bi C_ can  Bj. 

The next proposition contains facts that  follow trivially from the definitions. 

PROPOSITION 1.2: 
(a) I1 cB C can C, then B C rk C. 

(b) Let B = {Bi] i < a} be a rank preserving chain and B = Ui<~ Bi. Then 

for every i < a, Bi C rk B.  

(c) Let B = {Bil i < a}  be a canonical chain and B = LJi<a Bi. Then for 

every i < a ,  Bi C_ can B. 

The union of a canonical chain of well-generated Boolean algebras need not 

be well-generated. Indeed any thin tall non-well-generated Boolean algebra B 

is an example of such an algebra. (Thin tall Boolean algebras are defined in 

3.1). Here is an explanation. Let B~ be the subalgebra of B generated by 

I s (B) .  Then {B~] ~ < HI} is a canonical chain whose union is B. Every B~ 

is a countable superatomic algebra, and as such, it is well-generated. But the 

union of the Ba ' s  is not. The existence of non-well-generated thin tall Boolean 

algebras is shown in Theorem 3.2. 

As was explained above, a non-well-generated thin tall Boolean algebra yields 

a canonical chain of length R1 of well-generated Boolean algebras whose union 

is not well-generated. It  is less obvious how to construct a canonical chain of 

length w of well-generated BA's whose union is not well-generated. In Theorem 

1.4 we construct such a chain. More specifically, we construct a canonical chain 

{Bn[ n E 0a} such that  for every n, rk(Bn) = n and Bn is well-generated, but 

B := [.Jne~o Bn is not well-generated. Clearly, rk(B) = w. 

Clearly, the union of any strictly increasing infinite canonical chain must 

have infinite rank. So the construction of Theorem 1.4 yields a counter-example 

with minimal rank. For rank preserving chains, however, one could also ask for 

counter-examples with finite rank. We shall construct a rank preserving chain of 

length w consisting of well-generated unitary Boolean algebras of rank 3 whose 

union B is not well-generated. The union of a rank preserving chain of rank-3 

unitary Boolean algebras must have rank 3. Since rank-2 Boolean algebras are 

always well-generated, B is a minimal counter-example - -  indeed, in two senses: 

the rank of B is minimal, and the length of the chain which forms B is minimal. 

We shall thus prove the following two theorems. 

THEOREM 1.3: There is a rank preserving chain {Bi[i < w} such that: 
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(1) For every i �9 w, rk(Bi) = 3 and Bi is unitary. 

(2) For every i �9 w, Bi is well-generated. 

(3) B:=  Uie~ Bi is not well-generated. 

It follows from (1) that rk(B) = 3 and that B is unitary. 

THEOREM 1.4: There is a canonical chain {Bi]i  ( W} such that: 

(1) For every i �9 w, rk(Bi) = i. 

(2) For every i �9 w, Bi is well-generated. 

(3) B:=  Uie~ Bi is not well-generated. 
It follows from (1) that rk(B) = w and that B is unitary. 

The Boolean algebras constructed in the above theorems have cardinality 2 ~0 , 

and their sets of atoms are of cardinality R1. We do not know whether these 

cardinalities are the minimal possible. So the following question may be asked. 

QUESTION 1.5: (a) Is there a canonical chain {Bil i E ~} such that each Bi is 

a well-generated subalgebra of P(w),  and Uie~ Bi is not well-generated? 

(b) Is there a rank preserving chain {B~[ i �9 w} such that each B~ is a well- 

generated subMgebra of P(w)  of rank 3, and Uie~ Bi is not well-generated? 

(c) Are there examples in which the Bi's have cardinality lq 1 7. 

2. T h e  c o n s t r u c t i o n  of  t he  chains  

We describe a certain set-theoretic construction. It will be used in Theorems 1.3 

and 1.4. 

Definition 2.1: For a cardinal # and a set K,  write 7)~(K) = {a c_ K[ [a[ = #}. 

We shall deal with objects which we call candidates. Let K be an uncountable 

set. A c a n d i d a t e  for K is a sequence A -- {Ail i E w} such that  for every i c w, 

Ai C_ P~0 (K), for every distinct i, j E w, JAil _> R0, Ai M Aj = r and Uiew Ai is 

an almost disjoint family. That  is, aMb is finite for every distinct a, b E Uie~ Ai- 

(a) Suppose that  A is a candidate for K.  We call A an in te r sec t ion  s y s t e m  

for K,  if for every countable partition P of K there is p E P such that  IS(/~,p) 

is infinite, where IS(.4,p):={i C w[ (3a E A~)([a Mp[ = R0}. 

(b) Suppose that  ~ is a candidate for K and set A = U~e~ Ai. Let v: A --* 

7~o (K). Call {A, v} a spaced  in t e r sec t ion  s y s t e m  for K,  if the following 

conditions hold. 

(1) For every a E A, v(a) C_ a, and v(a) and a - v(a) are infinite. 

(2) For every countable partition P of K there is p E P such that IS(,4, v,p) 

is infinite, where IS(.4, v , p ):= { i �9 w I ( 3a �9 Ai ) ( lv( a ) M p[ = 1%)}. 
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(c) Let p _< IKI and A be a candidate for K. We say that  ,4 is a p - d e e p  

filling s y s t e m  for K,  if for every b E Pt,(K) and i E w, Ai n P(b) ~ ~. 

A IKl-deep filling system for K is called a filling s y s t e m  for K.  

Intersection systems will be used in the construction of Theorem 1.3 and 

spaced intersection systems will be used in the construction of Theorem 1.4. 

A "filling system" is a stronger notion in the following sense. If )~ is a filling 

system for K,  then it is an intersection system for K,  and if v is any function 

from [.Ji Ai satisfying Clause 1 of Part  (b), then (.4, v) is a spaced intersection 

system. These facts are stated in Part  (b) of the next proposition. All claims 

in the next proposition are trivialities, so their proofs are omitted. 

PROPOSITION 2.2: (a) Let A ={Ai[  i E w} be a p-deep filling system for K,  

and L C_ K be such that ILl _> p. Then {A~ n P(L)[ i E w} is a p-deep filling 

system for L. 

(b) Let A = {Ai I i e w} be a filling system for K.  Then: 

(i) .4 is an intersection system for K.  

(ii) Let v: ~Jic~ Ai --* 7~o (g )  be such that for every a e [-Jic~ Ai, v(a) C a, 
and v(a) and a - v(a) are infinite. Then (,4, v) is a spaced intersection 

system [or K .  

(c) Suppose that A is an intersection system for K and K C_ M.  Then A is an 

intersection system for M.  The analogous statement for spaced filling systems 

also holds. 

The next theorem establishes the existence of an Rx-deep filling system for 2 ~~ 

By Proposition 2.2(a), this implies the existence of a filling system for R1, and 

from2.2(b) and (c) it follows that every A > R1 has an intersection system. 

This means that the existence of intersection systems is of interest only for •1. 
The same is of course true also for spaced intersection systems. For filling 

systems, however, the situation is different, and in Theorem 3.3 we shall show the 

existence of filling systems for some cardinals > 2 ~~ However, these additional 

filling systems have no Boolean algebraic application. 

THEOREM 2.3: (a) R has an Rx-deep filling system. 

(b) R1 has a filling system. 

Proof: Part (b) follows trivially from (a) and Proposition 2.2(a), so we 

prove (a). Let {ea [ a < 2 ~~ } be an enumeration of all subsets of R which 

are order isomorphic to Q. We define by induction on a < 2 ~~ a sequence 

,4a = {An,i l l  E w}. For every i, Aa,i C_ p~o(]~). The induction hypotheses are 

as follows: 
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(1) For every i C w, IA~#I < I~1 + 

(2) For every i # j ,  A~,i M A~,j = 0. Also, Uie~ Aa# is an almost disjoint 

family, and for every a E Uie~ As,i,  a is the range of a convergent sequence 

in R. 

(3) If a < fl, then A~,i C_ A~,~ for every i E ca. 

Let A0,i = 0 for every i E w. For a limit ordinal ~ and i C w let A~# = 

U,~<~ A,,i.  
Suppose that  Aa has been defined, and we define -4a+1. Let La = 

{lima] a E U/e~Aa#}.  So ]L~] < ]a] + R0. Since e~ is order isomorphic 

to Q, the set Acc(e~) of its accumulation points is of cardinality 2 s~ Let 

r~ e Acc(e~) - La. Let {~a,i] i E w} be a set of pairwise disjoint sequences 

converging to ra such that  for every i E w, aa, / :=Rng(da,i)  C_ ea. Let 

Aa+x,i = A~,i U {as,i}. It is easy to see that  {A~+I#I i E w} satisfies the 

induction hypotheses. 

For every i C w let A / =  U{Aa#[ a < 2 ~~ and f i  ={Ai ]  i C w}. We show 

that  A is an Rl-deep filling system for R. Clearly, ~ is a candidate for 2 ~~ Let 

c C_ R be of cardinality R1. Then c contains a subset isomorphic to the rationals. 

Hence for some a < 2 ~~ ea C_ c. Hence for every i E w, aa,i C ea C c. Since 

aa,i E Ai, it follows that  Ai ~ P(c) # O. So A is an R~-deep filling system for 

2 r176 . I 

QUESTION 2.4: I f  A = {Ai[ i E w} is an intersection system for K ,  define 

[[-4[[:=[ Uie~ Ai[. In view of Theorem 2.3 and Proposition 2.2, is it consistent 

that R 1 < 2 R~ and R1 has an intersection system .4 with [I.4[[ = R1.9 

We observe that  MA +R1 < 2 ~~ implies that  such an intersection system does 

not exist. 

PROPOSITION 2.5: Assume MA+RI < 2 ~~ let A < 2 ~~ and {ai[ i < A} be an 

almost disjoint family of  countable subsets of  lql. Then there is a partition P of 

Ra into countably many sets such that p M ai is finite for every p E P and i < ~. 

Proof: Let (R, _<) be the following poset. Every member of R has the form 

(a, ~/), where 

(1) a is a finite subset of wxR1, and for every a C R1 there is at most one 

n E w such that  (n, a)  E a, 

(2) ~/is a finite subset of A. 

For (a l ,T] l ) ,  (gr2,~]2 > E R we define (O'l,r]l } < (O'2,?~2 } if gr 1 C 0"2, ?]1 C ?72 and  

for every i e ~71 and n E Dom(ax), ({n}xa/)  M al  = ({n}xai)  M a2. The poset 
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(R, _<) is c.c.c., and the proof of this fact is standard and is left to the reader. 

For every a < R1 let Ds = {(a,~) �9 R[ a �9 Rng(a)} and for every i < A let 

Ei = {(a,~) �9 R[ i �9 U}. Then the D~'s and the Ei 's are dense in R. Let 

G be a filter which intersects each Ds and each Ei and let P = {Phi n �9 w},  

where Pn = {a[ for some (a, 7/) �9 G, (n, a) E a}. Then P is as required in the 

proposition. | 

We prepare for the proof of Theorem 1.3. Suppose that  A ={Ai l  i �9 w} is an 

intersection system for K.  We shall assume that  U{al a �9 Ui A/} = K.  This is 

really not needed, but it makes the notation somewhat simpler, and in fact, it 

does not change the generality of the construction. 

De~mtion  2.6: Let ~ be an uncountable cardinal and A = {A~ I i �9 w} be 

an intersection system for ~ such that  U{al a �9 U~ Ai} = t~. We define an 

increasing sequence of Boolean algebras Bi(-4), i �9 w. The union of this chain 

is denoted by B(.4). Let BE be the subalgebra of :P(~xw) generated by 

c u < 

For i e w let B/(A) be the subalgebra of 7~(nxw) generated by 

BE U U { a x ( w  -- {J})l a e Aj}. 
j_<i 

Let B(.4) = Uie~ Bi(A)- 

Definition 2.7: Let B be a Boolean algebra. The operations of B are denoted 

by +, �9 and - .  The partial ordering of B is denoted by <, and ~ denotes 

the symmetric difference, that  is, dab = (a -- b) + (b - a). Suppose that  B is 

superatomic. 

(a) Let a, b c B. Define a ___B b, if a = 0 or rkS(a  - b) < rkB(a); and a ~ B  b, 

if a ___s b and b _~B a. We omit the superscript B, when B can be understood 

from the context. 

(b) For a _< rk(B) let Ats(B)  = {a �9 B I a / I s ( B )  �9 A t ( B / I s ( B ) ) } .  Let 

At(B) = U{Ats(B)I  a < rk(B)}. 

(c) Let E C_ B. We say that  E is a c o m p l e t e  se t  o f  r e p r e s e n t a t i v e s  

( C S R )  for B, if E _C At(B),  and for every a �9 At(B) there is a unique e �9 E 
such that  e ~ s  a. 

(d) A Boolean algebra B is c anon ica l l y  we l l - g en e ra t ed ,  if it has a CSR H 

such that  the sublattice of B generated by H is well-founded. 
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It is easy to see that  if H is a CSR for B, then H generates B. So a canonically 

well-generated BA is indeed well-generated. We shall need the following claims 

which appear in [BR1]. 

PROPOSITION 2.8: (a) Let H be a CSR for B. Then for every a E B there is a 

finite set a C H such that for every b E a, rkB(b) < rkB(a) and a < ~-~a. 

(b) (i) Let H be a CSR for B.  Suppose that for every a, b E H: i f  a ~_ b, then 

a <_ b. Then the lattice generated by H is well-founded. 

(ii) Suppose that B is canonically well-generated. Then B has a CSR H such 

for every a, b E H: ira ~_ b, then a <_ b. 

(c) Let B be a well-generated BA  and I be a maximal ideal in B.  Then there 

is a well-founded lattice G C_ I such that G generates B.  

(d) Every countable superatomie Boolean algebra is canonically we11- 

generated. 

Parts (a)-(d) of 2.8 are proved in [BRI]: Proposition 3.7(a), Proposition 2.10, 

Proposition 2.9(3) and Proposition 3.3(d) respectively. 

Proof of Theorem 1.3: We shall show that  if .4-- {Ai[ i E w} is an intersection 

system for n, and ~ = UiEwUAi, then {Bi(A)[ i E w} and B(.~) fulfill the 

requirements of Theorem 1.3. Since by Theorem 2.3 and Proposition 2.2(b), 
•1 has an intersection system, Theorem 1.3 follows. Indeed, if A is taken to 

be the intersection system for R1 which was constructed in Theorem 2.3 and 

Proposition 2.2(b), then [B(A)] = 2 ~~ and [ At(B(A))[ = R1. 

Let ,4 and ~ be as above, and denote B~ = Bi(,4) and B = B(A). 

CLAIM: The following facts hold. 

(1) For every i E w, At(Bi) = ({e}[ e E ~xw}. 
A 

(2) For every i E w, Atl(B/) = {({a}xw)~a I a < ~ and a E V<Uo(~xw)}. 

(3) For every i E w, rk(Bi) = 3 and Bi is unitary. This implies that rk(B) = 3 

and B is unitary. 

(4) For every i , j  E w: i f i  < j ,  then At2(Bi) = Bi M At2(Bj). 

(5) For every i E w, Bi is canonically well-generated. 

(6) B is not well-generated. 

Proof: It is left to the reader to check that  Facts (1)-(4) hold. 

We prove (5). For i E w, a E ~ and a C ~ denote 

c ( a , i ) = { a } •  and d ( a , i ) = a •  
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Let 

H0 = �9 

H2(i) = U { d ( a , j ) l  a �9 Aj}  
j_<i 

H1 (i) =- {c((~, i)I(~ �9 ~}, 

and H(i)  -- Ho U Hi( i )  U H2(i). 

It is easy to see that  H(i )U {1 s~ } is a CSR for B~. Observe that  for every a, b �9 

H(i): if a ~ b, then a C_ b. So by Proposition 2.8(b)(i), the lattice generated by 

H(i)  U {1B~ } is well-founded. Hence B/ is canonically well-generated. 

We prove (6). Suppose by contradiction that  G is a well-founded lattice which 

generates B. Since B is unitary, I (B )  is a maximal ideal. By Proposition 2.8(c), 

we may assume that G C_ I (B) .  Observe that  for every a �9 I (B )  there is g �9 G 

such that  a < g. So ga:=min({g �9 G I a -~ g}) is well-defined. For a �9 ~ set 

c(a) = {a}xw and 

n(c~) = min({n �9 ~[ g~(~) D {a} x (w-- { 0 , . . . , n - -  1}))). 

For g e w let Ke = {a Etr I n(a)  = g}. Clearly, {Ke] g e w} is a partit ion of n. 

So since .4 is an intersection system, there is no C w such that  IS(.~, Kno) is 

infinite. Let k E IS(A, Kno) be such that  k > no, and let a E Ak be such that  

a n Kno is infinite. 

We note that  (*) if d �9 I (B) ,  then d n (a• {k}) is finite. To see this, consider 

the set g defined as follows, g = /t0 U {c(a)[ a �9 n} U [Jic~ H2(i). Then 

H U {1 B} is a CSR for 8, and for every d E H, d n (a•  is finite. By 

Proposition 2.8(a), every member of I (B)  is contained in a finite union of 

members of H. This implies (*). 

Recall that a �9 Ak. So d:=ax(w - {k}) �9 B. From (*) and the fact: 

gd E I (B) ,  it follows that  gd n (ax{k})  is finite. So if we define a* = 

{a �9 a] (a, k) r gd}, then a - a* is finite. Let a' = {a �9 a] c(a) -~ gd}. 

Since d ~ gd, it follows that  a - a r is finite. We thus have 

a * n a  r C a  and a - ( a ' h a  ~) is finite. 

Recall that  a n Kno is infinite. It thus follows that  a* N a t n Kno is infinite. Let 

a C a*Na~nKno.  Since (~ E a p, we conclude that  c(~) -~ gd. Since c~ E Kno and 

k _> no, it follows that  (c~, k) E gc(cO, and since c~ E a*, we have that  (a,k} r gd. 

That  is, gc(~) ~ gd. This contradicts the fact that  gc(,~) is the minimal member 

of G almost containing c(a). It follows that  B is not well-generated. We have 

proved the claim. 
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That  Bs C_ rk Bj, follows easily from Facts (1)-(4), and Fact (5) is stronger 

than saying that  Bs is well-generated. So {Bsl i E w} is a rank preserving chain 

of rank-3 well-generated Boolean algebras which, by Fact (6), has a non-well- 

generated union. | 

The above example is slightly stronger that  what was stated in Theorem 1.3. 

Namely, each Bs is canonically well-generated and not just well-generated. 

T h e  c o n s t r u c t i o n  of  t h e  B o o l e a n  a lgeb ra  of  T h e o r e m  1.4 

Let H be a subset of a Boolean algebra B. Then clbBln(H) denotes the Boolean 

subalgebra of B generated by H and cl~ng(H) denotes the Boolean ring gener- 

ated by H. That is, cllng(H) is the closure of H under join, meet and difference. 

The subscript B is usually omitted. 

Let I be a Boolean ring without a unit. Then the Boolean algebra generated 

by I is denoted by Ba(I) .  That is, BL(I) is characterized by: 

(i) I is a subring of BL(/) ,  

(ii) I is a maximal ideal in BL(I).  

If BL(I) is superatomic, then rk(I) is defined to be rk(BL(I)). Also denote 

At(I) = At(BL(I)) N I. The notions of a well-generated and canonically well- 

generated rings are defined in the obvious way. 

Also, note that  if a Boolean ring I is well-generated, then BL(I) is well- 

generated, and the same is true for canonical well-generatedness. 

Let ({As] i E w},v) be a spaced intersection system for t~ such that  

U{al a E Us As} -- ~, and set .4 = {Asl i E w} and A = UsE~As. We 
construct the Boolean algebra B(A, v). 

For a E A let n(a) denote the number n such that a E An. For every a E A 

let B(a) be a Boolean algebra with the following properties. 

(1) {{a}[ a E a} C__ B(a) C_ 7)(a). 
(2) S(a) is countable and unitary. 

(3) rk(B(a)) = n(a). 
(4) For every b E I(B(a)), b M v(a) is finite. 

Denote I(a) = I(B(a)). So I(a) is a Boolean subring of P(a). Let d(a) = 
axw - v(a)x {n(a)}. We define subrings of 7~(axw). 

I~ = {bxw I b E I(a)}, 

II(a) = clrng(I0(a) U {{c}l c E axw}), 

I2(a) = clrng(II(a) U {d(a)}). 

Let B(A,v) el bln r , ,  i2(a))" 
~- , p ( t ~ x w ) l , k . ) a E A  
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Proof  o f  Theorem 1.4: Let a be an uncountable cardinal, (.4, v) = 

({Ai] i E w} ,v )  be a spaced intersection system for a such that  Uie~ U A i  = a 

and B = B(A,v) .  For i E w let Bi be the subalgebra of B generated by I i (B) .  

It  will be shown that  B and {BiI i  E w} fulfill the requirements of Theorem 1.4. 

By Theorem 2.3 and Proposition 2.2(b), 2 s~ has a spaced intersection system. 

So Theorem 1.4 follows. 

Three facts have to be shown. 

CLAIM 1: rk(B) = w and B is unitary. 

CLAIM 2: For every n E w, clbln(In(B) ) is canonically well-generated. 

CLAIM 3: B is not well-generated. 

Let I be a Boolean ring such that  BL(I )  is superatomic and let H C I .  We 

say that  H is an e x a c t  se t  o f  r e p r e s e n t a t i v e s  ( E S R )  for I ,  if: 

(1) H C_ At(I) .  

(2) For every a E At( I )  there is a unique b E H such that  b ~,, a. 

(3) For every a, b E H:  if a ~ b, then a < b. 

The verification of the following facts is left to the reader. 

FACT 1: Let a,a '  E A be distinct and b E I2(a ' ) .  Then b n (axw) has the 

following form: there are finite sets a C w and r C_ a x w  such that  b M (axw) = 

FACT 2: Let a E A, b E I2(a) and c E B F b. Then c E I2(a).  Tha t  is, 

B r b = 15(a)  r b. 

FACT 3: For every a E A and b E I2(a),  rkB(a) = rkl2(a)(a) and mltB(a)  = 

mlt/a(~) (a). 

FACT 4: For every a E A and e E I(a) ,  

Also, 

FACT 5: 

rkP(a)(cxw) -- l + r k l ( a ) ( e )  and mltI2(a)(exw) = mltI(~)(e). 

rkr2(a)(d(a)) = n(a) + 1 and mlt l2(a) (d(a) )  = 1. 

For every b E B - clrng(UaE A 12(a)) ,  rkB(b) : 02 and mltB(b) = 1. 

FACT 6: / (B)  : clrng(UaE A 12(a)). 
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A �84 A 

FACT 7: For every b �9 At ( I (B) )  - At(B) there are a �9 A and e �9 At( I (a) )  

such tha t  b ..~ e• or b ,.~ d(a). 

Proof of Claim 1: The claim follows trivially from Facts 3-5. 

Proof of Claim 2: Let n �9 w. We prove that  In+l (B) is canonically well- 

generated. For every Boolean algebra C, II(C) and I2(C) are canonically well- 

generated, so we may assume tha t  n > 2. 

For every a �9 A, I(a) is countable, and hence by Proposition 2.8(d), it is 

canonically well-generated. For every a �9 A let H(a) C_ At(I (a) )  be an ESR for 

I(a). The existence of such a set is assured by Proposition 2.8(b)(ii). 

Let a �9 A. If rk(d(a)) < n + 1 let Hi(a) = {d(a))}, otherwise let Hi(a) = O. 
Define H2n(a) C_ I2(a) to be the union of the following sets: 

Dl (a )  = {{e}[ e E axw},  

D2(a) = { { i } x ( w -  { 0 , . . . , n -  1})]i  �9 a}, 

D3(a) = {(bxw) - ( v ( a ) x { 0 , . . . , n -  1})[ b �9 H(a),rkI(a)(b) < n, 

and b is not a singleton}, 

D4(a) = H1 (a). 

Note that  in D3(a) we have tha t  (bxw) (3 (v(a) • {n}) is finite. This follows from 

Clause (4) in the definition of B(a),  which says tha t  b (3 v(a) is finite. So we 

conclude tha t  (b • w) - (v(a) • {n}) ~ b • w. 

Let 2 _ H ~  UaeA H2n(a) �9 It  followsA from Facts 3 and 4 and from the fact that  

H(a) C_ At(I(a)) ,  tha t  Hn ~ C At ( I (B) )  M In+l(B). Facts 3, 4 and 7 also imply 

that  for every b �9 A~-t(I(B)) M In+l(B), ]H2n M (b/~)l = 1. Hence Hn 2 is a CSR 

for I ,+1 (B). 

We show that  if b, c �9 Hn 2 and b ~ c, then b _< c. If rk(b) = 0, then there is 

nothing to prove. So we assume tha t  rk(b) > 1. A direct computation shows 

that  if there is a �9 A such tha t  b, c �9 H2(a), then b _< c. Suppose that  b �9 H2(a), 

c �9 H2(a ') and a # a' .  Note that  b and c intersect every set of the form {a}xw 

in a finite or a cofinite set. Since aMa r is finite, b c axw and c C_ a~xw, it follows 

that  there are finite sets a C a M a r and T C_ ~xw such that  b M c = ( f f •  

So rk(bNc)  < 1. Since also b ~ c, rk(b) = 1. Any member of H~(a) whose rank 

is 1 belongs to D2(a). Hence b has the form {i}x(w - {0, . . .  ,n}). Since b _ c, 

i � 9  ~. S o b < c .  

We have shown that  H~ is an ESR for In+l(B). So In+l(B) is canonically 

well-generated. This implies that  clbln(/n+l (B)) is canonically well-generated. 
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Proof of Claim 3: Suppose by contradiction that  G is a well-founded lattice 

which generates B. Since B is unitary, I(B) is a maximal ideal. By Proposition 

2.8(c), we may assume that  G c I(B). Observe that  for every a E I(B) there is 

g E G such that  a _< g. So ga:= min({g E G[ a _~ g}) is well-defined. For every 

a E ~ and g E w let c(a) = {a}xw and 

n(a) = min({n E w I gc(~) _D { a } x ( w -  { 0 , . . . , n -  1})}). 

Define Kt = {a E n ! n(a) = g}. Then {Kt I g E w} is a parti t ion of ~. 

So since (.4, v) is a spaced intersection system, there is no E w such tha t  

M:=IS(-4, v, Kno) is infinite. Let k E M be such that  k > no, and let a E Ak 

be such that  v(a) n Kno is infinite. 

We show that  for every d E I(B), dN (v(a)x{k}) is finite. For every a '  E 

A - {a}, a '  n a is finite. Let b E I(a'). Then 

(bxw) n (v(a)x{k}) C ( a ' x w ) N  (ax{k})  = (a'  n a ) x { k } .  

So ( b x w ) n  (v(a)x{k}) is finite. A similar computat ion shows that  

d(a') N (a x {k}) is finite. 

If b E I(a), then by Clause (4) in the definition of B(a), b n v(a) is finite. So 

(bx{k}) n (v(a)x{k}) is finite. By its definition d(a) n (v(a)x{k}) = ~. 
The set U{bxwl a '  E A, b E I (a ' )} tO{d(a ' ) [  a '  E A } u { { e } l  e E axw}  

generates I(B) (as a ring), and we have shown that  every member  of this set 

intersects v(a)x{k} in a finite set. So for every d E I(B), d N (v(a)x{k}) is 

finite. 

Since gd(a) E I (B) ,  (t) gd(a) N (v(a)x {k}) is finite. Let 

a '  = {a E v(a)[ {a} x w __ gd(a)}. 

Since d(a) ~ ga(a) and v(a) C_ a, v(a) - a' is finite. Hence, since v(a) N Kno is 

infinite, also a '  n / (no  is infinite. Let a E a '  n Kno be such that  

(1) (a, k) q~ ga(a)" 

(By (~), such an a exists.) Since a E Kno, it follows that  

2 • - { o , . . . ,  - 1 } ) .  

Since k > no, 

(2)  a)  E 9 c ( . ) .  
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But then gc(a) % gd(a). Recall that  {a} xw = c(a) and that  a E a' .  So 

(3) gd(a). 

Facts 1-3 contradict the minimality of go(a). It  follows that  B is not well- 

generated. | 

3. T w o  o b s e r v a t i o n s  

As was explained in the paragraph following Proposition 1.2, a thin tall non- 

well-generated Boolean algebra gives rise to a canonical chain of length ~1 of 

well-generated Boolean algebras whose union is not well-generated. We next 

prove the existence of such a Boolean algebra. 

Definition 3.1: Let B be a superatomic BA. B is t h i n  tall ,  if rk(B) -- R1, 

B is unitary, and for every a < R1, [Is(B)[ -- lq0. A topological space which is 

the Stone space of a thin tall Boolean algebra is called a t h i n  ta l l  space .  

Note tha t  a thin tall Boolean algebra is embeddable in P(w).  

We shall use the following theorem of Dow and Simon [DS] Theorem 2.8. 

THEOREM A: Let y be a countable set of  locally compact locally countable 

spaces. Then there is a thin tall space X such that for every Y E Y,  the one 

point compactifieation of Y is embeddable in X .  

THEOREM 3.2: There is a thin tall non-well-generated Boolean algebra. 

Proof: Let X be a thin tall space such that  the ordinal space R1 + 1 is em- 

beddable in X.  Let B be the clopen algebra of X.  Then (i) B is embeddable 

in 7)(w), and (ii) the interval algebra of (lql, <) is a homomorphic image of B. 

Corollary 2.5 in [BR2] says that  a Boolean algebra with properties (i) and (ii) 

above is not well-generated. So B is as required. | 

The construction of a filling system described in Theorem 2.3 can be gener- 

alized to the class of cardinals {~v+ll cf(~) = lq0}. 

THEOREM 3.3: Let ~, be an ordinal with cofinality R0. Then 2 nv has a~+-deep  

filling system. 

Proof'. For every infinite cardinal A there is a complete metric space X with 

weight A and cardinality A~~ For example, take Y to be the one-point com- 

pactification of a discrete space with cardinality A and let X = C(Y )  be the set 
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of all continuous functions from Y to R equipped with the uniform topology. 

Let A = ~v. So 2 ~ = A s~ Let {e~ I a < 2 i} be an enumeration of all subsets 

e of X with cardinality A and such tha t  [ clX(e)I = 2 ~. We define by induction 

on a < 2 ~ a sequence Aa = {Aa,iI i c w}. For every i, Aa,i c Pso(X) .  The 

induction hypotheses are: 

(1) For every i �9 ~,  IA~#t < lal + Ro- 

(2) For every i ~ j ,  Aa,i MAa,j = 0 and Uiew Aa,i is an ahnost disjoint family. 

For every a �9 Uie~ As,i, a is the range of a convergent sequence in X.  

(3) If a </3, then for every i �9 w, A~,i C A~,i. 

Let A0,i = @ for every i �9 w. For a limit ordinal 5 and i �9 w let A~,i = U~<~ A~#. 

Suppose that  .4~ has been defined, and we define -4~+1. Let L~ = 

{lima I a �9 Uie~da , i} .  So IL~I _< [a I + R0. Since [clX(ea)l = 2 ~, the 

set Acc(e~) of accumulation points of e~ is of cardinality 2 ~, and thus 

A c c ( e a ) - L ~  ~ 0. Let r~ �9 A c c ( e a ) - L a .  Let { ~ # ]  i �9 w} be a s e t  of 

pairwise disjoint sequences converging to re such that  for every i �9 w, 

aa,i:=Rng(ga,i) c eo,. Let Aa+l,i = Aa# U {aa,i}. I t  is easy to see that  

{Aa+l#[ i �9 w} satisfies the induction hypotheses. 

For every i �9 w let Ai = U{A,#[  a < 2 ~} and A = {Ail i �9 w}. We show 

that  .4 is a A+-deep filling system for X.  Clearly, A is a candidate for X.  Let 

c c_ X and Ic[ _> A +. Since the weight o f c i s  _< A, there is e C_ c s u c h t h a t  

[e[ = A and e is dense in c. Denote the weight e by #. Then #So _> [ clX(e)[ > A. 
So #So = ASo. 

A theorem of A. H. Stone ([KV] Chapter  1, Theorem 8.3) says that  if Z is a 

complete metric space with weight # and [Z[ > #, then [Z[ = #so. 

It  follows that  [clX(e)[ = A s~ Hence for some a < 2 ~, e = e~. Hence for 

every i �9 w, aa,i C e~ C_ c. So .4 is a filling system for X. I 

[BR1] 

[BR2] 

[DS] 

[KV] 

References  

R. Bonnet and M. Rubin, On well generated Boolean algebras, Annals of Pure 
and Applied Logic 105 (2000), 1-50. 

R. Bonnet and M. Rubin, On a poset algebra which is hereditarily but not 
canonically well generated, Israel Journal of Mathematics 135 (2003), 299- 
326. 

A. Dow and P. Simon, Thin-tall Boolean algebras and their automorphism 
groups, Algebra Universalis 29 (1992), 211-226. 

K. Kunen and J. E. Vaughan, Handbook of Set-Theoretic 'lbpology, North- 
Holland, Amsterdam, 1984. 


